Vehicle Based Road Dust Emission Measurements

Presented by: Hampden Kuhns

Coauthors: Vicken Etyemezian Jack Gillies

Mark Green
Marc Pitchford

John Watson

Acknowledgements

- Strategic Environmental Research And Development Program (SERDP)
- Idaho Department of Environmental Quality (IDEQ)
- Clark County Regional Transportation Commission (CCRTP)
- Desert Research Institute (DRI)

Outline

- AP-42 Road Dust Emission Estimation Methods
- TRAKER Road Dust Measurement Method
- TRAKER Calibration with PM₁₀ Flux
- TRAKER Results
 - Seasonal Changes in Emission Potential
 - Effects of Sanding and Street Sweeping
 - Emissions Inventory Development

AP-42 Road Dust Emissions Estimation

Silt content and silt loading are surrogates for road dust emissions potential.

Paved Road:

- EF (g/vkt) = f (silt loading, vehicle weight)
 Unpaved Road:
- EF (g/vkt) = f (silt content, vehicle weight, soil moisture/speed)

Relative Contribution to PM in NEI

- For Base Year 2001, Paved and Unpaved Road Account for:
 - -50% of PM₁₀ emissions
 - -30% of PM_{2.5} emissions
- Measured Transportable Fraction of PM₁₀ Emissions:
 - -At 100 m: Range from 100% to 15%.

Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) Measurement Method

Particle Sensors

- TSI DustTrak 5830
- Grimm ParticleSize Analyzer1.108

• GPS

Ashtech/MagellanPromark X

Data Acquisition and Processing

- •Lab View program displays and logs data from
 - •6 DustTraks
 - •3 Grimms
 - •1 GPS
- •Uniform time stamp applied to all data for synchronization
- •Data tables are loaded into MS Access for processing and analysis

TRAKER Signal vs Vehicle Speed

- •T = $C_{tire} C_{bkgrnd}$ •T = $a S^3$
- •On the same paved road the TRAKER signal increases with the speed cubed
- •Factoring out speed leaves a signal proportional to the emission potential of the road.

Upwind-Downwind Flux Measurements

Emission factor calculated as horizontal flux of PM₁₀ passing instrumented towers

Unpaved Emissions Measured on Flux Towers in Ft. Bliss TX (April 2002)

Vehicle	Weight (kg)	# Wheels
Dodge Neon	1,176	4
Ford Taurus	1,516	4
Dodge Caravan	1,759	4
HUMVEE	2,445	4
TRAKER (Chevy Van)	3,100	4
26' UHAUL Truck	5,227	6
LMTV	8,060	4
Freightliner (Tractor)	8,982	22
HEMMET	17,727	8
5-ton Truck	14,318	6

$EF_{PM10} = b W S$

Calibrating TRAKER with Emissions Factors from Tower Measurements

•
$$T = a S^3$$

(TRAKER Measurements)

•
$$EF_{PM10} = b W S$$

(Tower Measurements)

•
$$EF_{PM10} = k T^{1/3}$$

(Tower Calibrated TRAKER)

where a, b, and k are empirical constants

Relationship b/w TRAKER and Emissions Factor

Emission Potential

- Roads emit PM based on:
 - Weight of vehicle
 - Speed of vehicle
 - Dirtiness of the road (i.e. Emission Potential)
- Emission Potential is a property of the road only:

$$EP_{PM10} \left\lceil \frac{\left(\frac{g}{VKT}\right)}{\left(\frac{m}{S}\right)} \right\rceil = \frac{EF_{PM10}}{S} = \frac{kT^{\frac{1}{3}}}{S}$$

TRAKER Results: Seasonal Changes of Emission Potential

Street Sweeper Efficiency

Elgin Whirlwind Street Sweeper

Wintertime Road Sanding and Sweeping Experiment

Relative Effect of Street Sweeping

Road Dust EI Development with TRAKER

- 1. Measure TRAKER signal over 500+ km of roads.
- 2. Calculate emissions factor for each measurement based on TRAKER signal and TRAKER speed
- 3. Characterize emissions factors by season, road type, speed, and location (i.e. county, urban/rural).
- 4. Extrapolate emissions factors to all roads in domain based on season, road type, modeled speed, location, and VKT.
- 5. Apply Average Daily Traffic (ADT) estimates from Traffic Demand and Forecasting Models to create EI.

Emission Potential vs. Typical Road Speed

Emissions Potentials & Emissions Factors for Paved Roads in the Treasure Valley Idaho

Comparison of Silt Loading vs TRAKER for Ada and Canyon Counties, Idaho (BY 1999)

TDALLED /Mai/Dai.

Summer Winter

TRAKER (Mg/Day)	Silt Loading (Mg/Day)	
59	22	
89	56	

Map of Boise Road Dust Emissions

Summary and Conclusions

TRAKER Road Dust Measurement System

- obtains local road dust emission potential by sampling dust suspended by a vehicles tire
- has been calibrated to emissions factors based on unpaved road emissions
- provides significantly higher spatial and temporal resolution of road dust emissions than silt loading
- can be used for to create road dust emission inventories and to evaluate effectiveness of control strategies